Reinterpretation of velocity-dependent atomic friction: influence of the inherent instrumental noise in friction force microscopes.
نویسندگان
چکیده
We have applied both the master equation method and harmonic transition state theory to interpret the velocity-dependent friction behavior observed in atomic friction experiments. To understand the discrepancy between attempt frequencies measured in atomic force microscopy experiments and those estimated by theoretical models, both thermal noise and instrumental noise are introduced into the model. It is found that the experimentally observed low attempt frequency and the transition point at low velocity regimes can be interpreted in terms of the instrumental noise inherent in atomic force microscopy. In contrast to previous models, this model also predicts (1) the existence of a two-slope curve of velocity dependence and (2) the decrease of critical velocity with temperature, which provides clues for further experimental verification of the influence of instrumental noise in friction measurements.
منابع مشابه
Velocity dependent friction laws in contact mode atomic force microscopy.
Friction forces in the tip-sample contact govern the dynamics of contact mode atomic force microscopy. In ambient conditions typical contact radii between tip and sample are in the order of a few nanometers. In order to account for the large interaction area the dynamics of contact mode atomic force microscope (AFM) is investigated under the assumption of a multi-asperity contact interface betw...
متن کاملInvestigation of the Forming Force in Torsion Extrusion Process of Aluminum Alloy 1050
In this paper, torsion extrusion (TE) process on 1050 aluminum alloy was investigated by simulation as a severe plastic deformation (SPD) method and the effects of friction coefficient, angular velocity of the rotating die and punch speed on maximum punch force were studied. A finite element (FE) model was developed to simulate the TE process via DEFORM software. The FE results were validated co...
متن کاملInfluence of Friction Coefficient on Workpiece Roughness in Ring Upsetting Process
In forming processes contact friction significantly influence metal flow, stress-strain state and process parameters. Furthermore, tribological conditions influence workpiece surface quality and its dimensional precision. This paper presents research results of the influence of contact friction coefficient on a workpiece surface quality in ring upsetting by flat plates. Workpiece surface roughn...
متن کاملSensitivity Analysis of Coulomb and HK Friction Models in 2D AFM-Based Nano-Manipulation: Sobol Method
Nanotechnology involves the ability to see and control individual atoms and molecules which are about 100 nanometer or smaller. One of the major tools used in this field is atomic force microscopy which uses a wealth of techniques to measure the topography and investigates the surface forces in nanoscale. Friction force is the representation of the surface interaction between two surfaces an...
متن کاملFriction at the Atomic Scale
Everyone learns the basics of friction in high-school physics classes: the friction force experienced by a sliding object is proportional to the normal force that an object exerts on a surface. Remarkably, this extremely simple and empirical relation, known as Amontons’ Law, is still often used in creating the most technologically sophisticated machines and devices, even though friction is know...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 90 1 شماره
صفحات -
تاریخ انتشار 2014